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Abstract

The common Gibbs–Thomson equation, widely used to explain the melting temperature of lamella crystals, is based on a given heat of

fusion and a given surface free energy and the size (thickness) of the crystal. With this equation it is not possible to explain the, compared to

the thickness of the crystals, very high melting temperature of cyclic alkanes and ultra-high molar mass polyethylene (UHMMPE). Another

thermodynamic approach to the Gibbs–Thomson equation, starting from an incremental composition of enthalpy and entropy of the chain

molecule, is presented. This describes the melting temperature of (lamella) crystals of linear, folded and cyclic alkanes as well as UHMMPE,

all forming crystals of the same lattice type, with only one set of parameters. The essential variable turns out to be the number of CH2-groups

of the respective molecule, incorporated into the crystallite, rather than its thickness. This may be explained if we assume the melting process

caused by conformation dynamics which are more restricting the greater number of CH2-groups that are involved in the chain movement. In a

lamella crystal of a certain thickness, a cyclic alkane ‘feels’ longer than an n-alkane, as well as a linear molecule with adjacent or tight folds

feels longer than one with randomly distributed chains and large loops in the amorphous. This approach helps to understand the melting

behavior of polymers forming folded-chain crystals. It enables the cyclic and folded ultra-long alkanes to serve as model substances for the

folded-chain crystals of polyethylene without further assumptions concerning the surface energy and fits all findings smoothly into one

picture. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Melting of a solid is described in different ways. The

mostly used approach is the thermodynamic one with the

temperature of a first-order transition defined as

the intersection of the Gibbs free energy GðTÞ of the solid

and liquid state, respectively. The first-order transition is

‘sharp’, i.e. the enthalpy, entropy, volume and other

quantities change discontinuously (step-like) and the

transition temperature is fixed as long as both phases

coexist. But this is, strictly speaking, only true if we

consider equilibrium conditions and if the size of both the

involved phases is infinite. For polymers this premise is not

fulfilled, there is no equilibrium, the crystallization is not

total and the crystal size is not infinite. Many semi-

crystalline polymers, in particular polyethylene (PE),

crystallized from the melt as well as from solutions, form

lamellae crystals which are 10–30 nm thick and at least one

order of magnitude larger in the lateral direction. It was

experimentally found that the melting transition is not sharp,

as expected for a pure one-component system, but covers a

certain temperature range and that the (maximum) melting

temperature correlates with the thickness of the lamellae.

To describe this finding quantitatively the Thomson–

Gibbs Eq. (2) has widely been used. From the thermodyn-

amic point of view, there is a decrease of the melting

temperature on changing from infinite crystal sizes to finite

ones. Small crystals are less stable, the reason is the more

and more dominant surface energy, which reduces the

cohesion energy of the molecules and shifts the temperature

of breakdown of the lattice to lower values. Originally

Gibbs and Thomson derived their formula considering the

phase in question as homogeneous and isotropic with a

spherical boundary. In other words, they compared the

transition temperature of a ‘bulky’ phase with that after

crushing it to a fine powder with a lot of surface energy.1
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1 Thomson himself, however, based his formula on a liquid phase and

formulated the dependence of the vapor pressure on the radius of a spherical

(droplet) liquid.
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The effect is, however, small and becomes only measurable

for ‘grain’ sizes well below 1 mm. The respective formula of

Thomson [1], derived from the laws of classical thermo-

dynamics reads

T1
fus 2 Tr

fus

T1
fus

¼
2s

rqfusr
ð1Þ

where T1
fus is the melting temperature of infinite crystal and

Tr
fus; the melting temperature of a spherical ‘aggregate’ of

radius r, s, the specific (Gibbs) free energy of the crystal-

melt phase boundary, qfus, the specific heat of fusion and r is

the density of solid.

It can easily been shown, that the right-hand side, except

a constant factor, is the ratio of the total surface energy and

the total heat of fusion of the crystal. For spherical samples

with given specific energies this fraction is proportional to

1/r. In the case of a lamella crystals, being much larger in

the lateral dimensions, the right-hand side scales with 1/d,

with d, the thickness of the lamella, and the equation can be

rewritten as:

T1
fus 2 Tr

fus

T1
fus

¼
2s

qfusr

1

d
ð2Þ

This so-called Gibbs–Thomson equation has been proved

experimentally [2] and describes the melting temperature of

polyethylene (PE) lamellae crystals very well and has

therefore often been used in the literature.

Another approach starts from the melting point of linear

alkanes—the oligomers of linear PE—crystallizing in stacks

of lamellae, and extrapolates the melting point of those

alkanes forming the same lattice type (orthorhombic) to

infinite chain length. The formula of Broadhurst [3], even

presented by Flory and Vrij in their fundamental paper on

linear-chain homologs [4] is based on the calculation of

Huggins [5] which goes back to a linear increase with chain

length of the enthalpy and entropy of fusion

Tn
fus ¼ T1

fus

a þ n

b þ n
ð3Þ

where n is the number of C-atoms in the alkane, T1
fus ¼

414:3; a ¼ 21:5 and b ¼ 5:0: This equation has been used

as well to calculate the melting temperature of PE crystals

[2]. For n . 150 the calculated temperatures coincide with

those from Eq. (2) within 0.1 K if one takes d ¼ lcn (with

lc ¼ 0:1273 nm the orthorhombic C–C lattice distance in c-

direction) and 2s=ðqfusrÞ ¼ 0:8 nm (see Fig. 3 in Ref. [2]).

Nevertheless there are problems arising: for some types

of polyethylene (e.g. nascent as well as gel-crystallized

ultra-high molecular weight PE (UHMWPE)), though

containing small lamella like crystals as well, the measured

melting temperature is much too high compared to the

expected one from the well known crystal size [6] and there

is a controversial discussion about the reasons for the high

melting point [7]. Obviously the Flory–Huggins Eq. (2) is

not valid in these cases without further assumptions

concerning the parameter values.

Another problem arises from the melting behavior of

oligomers, the alkanes (linear as well as cyclic, chain-

extended as well as chain-folded) which have been

synthesized with a n up to several hundred of C-atoms [8]

to serve as model substances for PE: generally their melting

points depend on the number of C-atoms (Eq. (3)) of the

respective alkane rather than on the thickness of the

respective stacked lamella crystal (Eq. (2)) (the crystal

size of melt-crystallized alkanes is known to be large and

the crystals are nearly perfect). Only in the case of linear n-

alkanes both equations are able to describe the melting point

quantitatively and the number of C-atoms within one

lamella and the thickness of it are equivalent quantities

where the lattice properties define the relation. Why does

the almost perfect, large stacked and laterally very extended

n-alkanes crystals formally follow the Gibbs–Thomson

equation, although the surface energy does not play a role

for these large crystals? And why in the case of cyclic

alkanes and ultra-long n-alkanes forming folded-chain

crystals, this equation does not hold anymore but yield a

too low melting temperature (see below), although the

crystals are of the same type: stacked large lamella crystals

with the same lattice and thus almost the same interaction

energy?

It may be helpful to leave thermodynamics for a moment

and look on the dynamic approach to describe the melting

process. As early as 1910, Lindemann defined the melting

temperature that temperature, where the vibration amplitude

becomes so large, that the atom ‘bounces’ against the

neighbored one. Of course this idea is rather primitive from

our point of view, but for metals and other small molecules

it worked well and shows that melting (on an atomic level)

is a dynamic process. To day it is known that atoms are in

fact not fixed on their original position in the lattice and for

metals the idea is accepted, that on rising the temperature

there is an continuous increase of the number of very mobile

lattice defects (e.g. dislocations) within the crystal. If the

number of defects becomes too large, the long-range order is

lost and the lattice breaks down (melts) loosing the position

order. There is no doubt that the respective total (positional)

entropy increase can be calculated as the number of atoms

times the contribution of each atom, which for large crystals

has only one value (Richards rule [9] even tells us, that it is

7–14 J K21 mol21, the same for all spherical molecules!).

For non-spherical molecules in addition rotational degrees

of freedom are involved and on melting the much larger

orientational entropy (20–50 J K21 mol21) plays a domi-

nant role. For chain molecules (and polymers) a third

component, the conformational entropy (7 –

12 J K21 mol21), must be taken into consideration [10].

Of course the dynamics of the respective molecular motion

is involved in the melting process too. Obviously the type

and the size (number of repeating units) of the molecule

must be taken into consideration for quantitative description

of the melting process and the calculation of the fusion

temperature.
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Having that in mind, we tried to describe the melting

temperature of PE as well as all types of alkanes with one

and the same formula. We had succeeded with a

thermodynamic formulation which starts from an incre-

mental (by the number of repeating units of the molecule)

composition of the enthalpy and entropy of fusion similar to

Huggins early linear approach [5]. This will lead to a

formula which looks very like that of Thomson and Gibbs

(Eq. (2)) but contains Eq. (3) as well. The difference against

Eq. (2) is, that the melting temperature now depends on the

size of the molecule (i.e. the number of repeating units

(monomers) of the molecule which are incorporated into the

crystal) rather than the dimension (thickness) of the crystal.

With this formula the melting behavior of n-alkanes as well

as cyclic alkanes can be described quantitatively with the

same set of parameters. Even the melting point of different

thick polyethylene lamella crystals can be explained this

way without the necessity of certain surface energies. Of

course the influence of the surface energy cannot be

neglected for small crystallites, it causes a melting point

decrease which follows the original Gibbs–Thomson

formula (Eq. (1)), but this effect is normally much smaller

than expected and does not play any role in the case of

alkanes, which form rather large crystals. An additional

advantage of our approach is, that it takes not only the

thermodynamics but even the dynamics of melting into

account, which in the case of chain molecules should

depend on the number of units connected together.

In what follows we try to describe our basic ideas and

prove the validity with known data from linear as well as

cyclic alkanes including ultra-long paraffin which form

folded-chain crystals as PE does. We want to explain how

this approach could help to interpret the deviations of

certain materials from the expected melting point, calcu-

lated with the common Gibbs–Thomson Eq. (2), including

the unusual high melting point of some ultra-high molecular

mass PEs.

2. Another approach to the Gibbs–Thomson formula

The basic idea is that the molar enthalpy DfusHmol and

entropy DfusSmol of fusion of chain molecules (oligomers),

each containing n repeating units (r.u.) in crystals of the

same lattice type,2 is incrementally composed. This is

reasonable both from the thermodynamic (extensive

quantities!) and dynamic (chain mobility!) point of view:

DfusH
n
mol ¼ nDfusH

1
r:u: þ DfusHe ð4Þ

DfusS
n
mol ¼ nDfusS

1
r:u: þ DfusSe ð5Þ

The infinite sign refers to the value for an infinite long chain,

the second term on the right-hand side then contains the

excess quantities, i.e. all differences compared to the ideal

infinite crystal: it contains the contribution from the end

groups of the chain, which are different from the internal

repeating units, the difference in chain interaction energy of

the marginal (compared to the central) monomer units of the

chain (i.e. the surface energy of the lamella crystal), the

interface energy between two lamellae (for stacked lamella

crystals), etc. Of course we are aware that we have

‘forgotten’ the entropy of ‘unpairing’ [4] the molecular

ends of the originally parallel chains on melting which leads

to an additional term R lnðnÞ on the right-hand side of Eq. (5)

and we discuss this point later.

For a first-order transition (e.g. the melting) the change in

Gibbs free energy is zero: DtrG ¼ DtrH 2 TtrDtrS ¼ 0: From

that follows with Eqs. (4) and (5):

1

Tn
fus

¼
DfusS

n
mol

DfusH
n
mol

¼
DfusS

1
r:u: þ

DfusSe

n

DfusH
1
r:u: þ

DfusHe

n

ð6Þ

The right-hand side of this equation can be expanded as a

Taylor series around 1=n ¼ 0 :

1

Tn
fus

¼
DfusS

1
r:u:

DfusH
1
r:u:

2
DfusS

1
r:u:DfusHe 2 DfusH

1
r:u:DfusSe

DfusH
1
r:u:

� �2
n

þ
DfusS

1
r:u:DfusHe 2 DfusH

1
r:u:DfusSe

� �
DfusHe

DfusH
1
r:u:

� �3
n2

2 · · ·

ð7Þ

For large n the first approximation is sufficiently precise:

1

Tn
fus

<
DfusS

1
r:u:

DfusH
1
r:u:

2
DfusS

1
r:u:DfusHe 2 DfusH

1
r:u:DfusSe

DfusH
1
r:u:

� �2
n

<
DfusS

1
r:u:

DfusH
1
r:u:

� 1 2
1

DfusH
1
r:u:n

DfusHe 2
DfusH

1
r:u:

DfusS
1
r:u:

DfusSe

� �� �
ð8Þ

This can also be written as

1

Tn
fus

¼
1

T1
fus

1 2
DfusHe 2 T1

fusDfusSe

DfusH
1
r:u:n

� �

<
1

T1
fus

2
DfusGe

T1
fusDfusH

1
r:u:

1

n
ð9Þ

with

DfusGe ¼ DfusHe 2 TfusDfusSe<DfusHe 2 T1
fusDfusSe

and T1
fus ¼ DfusH

1
r:u:=DfusS

1
r:u::

Formula (9) looks formally like the Gibbs–Thomson

Eq. (1) (and we shall still call it so) but it contains the

number n of repeating units of the chain molecule rather

than a size measure (r or d ) and a quantity which is the total

excess (Gibbs) free energy (considering T1
fus < Tfus) rather

than only the surface free energy which is only a part of it.

2 Or at least the same interaction energy between the chains inside the

crystal.
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Remark. To be precise, Eq. (9) is equivalent to the

reciprocal temperature described by the Gibbs–Thomson

equation. If we would expand the reciprocal of Eq. (6) in a

similar way we would get an equation which directly has the

form of Eq. (1). However, we prefer the expansion of the

reciprocal temperature, because it converges somewhat

better.

From the linear approach of Eq. (6) a formula like Eq.

(3), originally derived by Huggins [5] and later presented by

Broadhurst [3] as well as by Flory and Vrij [4], can easily be

calculated too. It should be emphasized, that the quantities

on the right-hand side of Eq. (9) are, of course, temperature

dependent and, that the entropy of unpairing of the chain

ends has been forgotten as mentioned above. As shall be

shown in what follows, Eq. (9) describes the melting

behavior of different alkanes and PE very well, so obviously

the temperature dependence of the right-hand side is almost

compensated by ignoring the unpairing entropy term (see

even Ref. [2] concerning this problem).

Anyhow, the validity of Eq. (9) should be proved with

experimental data. If we plot 1/Tfus against 1/n (‘Gibbs–

Thomson plot’) for different oligomers and the polymer

composed of the same repeating unit, we should get a

straight line.

3. Verification of the approach

3.1. Literature data

In what follows we shall apply Eq. (9) to polyethylene

and its oligomers, the alkanes, and rewrite it for this

purpose:

1

Tn
fus

¼
1

T1
fus

2
DfusGe

T1
fusDfusH

1
CH2

1

n
ð10Þ

To prove this formula we have collected all available fusion

data of linear and cyclic alkanes from literature [8]. From

the (total) molar enthalpy (and entropy) of fusion of the

alkanes plotted against n, the number of CH2 groups in the

respective molecule, we found a linear relation for all

alkanes with n . 10 (Fig. 1) Even and odd numbered linear

and cyclic alkanes crystallize in different lattices, this yields

of course different enthalpy values. The linear behavior is,

however, clearly verified for each lattice type. The slopes

are almost the same for the linear ðDfusH
1
CH2

¼

3:4 kJ mol21Þ as well as cyclic alkanes ðDfusH
1
CH2

¼

3:5 kJ mol21Þ: In other words the incremental fusion

enthalpy and entropy do not differ very much, obviously

the chains are packed in a similar way and the internal

interaction inside the crystal is quite the same though the

lattice type may differ (there exist even some X-ray data in

literature supporting this finding [11]). From the intercep-

tion with the y-axis, on the other hand, we get the respective

excess enthalpies which are quite different for the

orthorhombic linear ðDfusHe ¼ 23 kJ mol21Þ and the cyclic

ðDfusHe ¼ 235 kJ mol21Þ alkanes. This seems reasonable

because, on the one hand, different lattices should give

different contributions to the surface energy and, for cyclic

alkanes on the other hand, the chains are twisted in the

neighborhood of the folds and fit badly into the preferred

(orthorhombic) packing, leading to a loss in interaction

energy between the chains in that region of the crystal

resulting in a reduction of the total enthalpy. Similar results

can be obtained for the total entropy of transition. This

supports the idea of incremental composition of the total

enthalpy and entropy of fusion (Eqs. (4) and (5)) at least for

this class of compounds.

The Gibbs–Thomson plot (1/Tfus against 1/n ) of all

available alkane data is shown in Fig. 2. The dotted line

represents the best fit for linear alkanes of medium size

ðn ¼ 30–100Þ; for which the most reliable data exist:

1

Tn
fus

¼ 2:413 £ 1023 þ 0:0162
1

n
ð11Þ

Fig. 1. The total enthalpy of fusion of different alkanes [3,8]. The dotted

lines mark the best fit for odd linear and even cyclic alkanes with more than

20 CH2 groups.

Fig. 2. Gibbs–Thomson plot of melting temperature of alkanes (most data

from Ref. [8]) and chain-extended PE [2]. The dotted line represents the

best fit for medium sized n-alkanes (T1
fus : 414.4 K, slope: 0.0162 K21, Eq.

(11)).
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The different lattices [11] were disregarded in this case, the

differences in melting point are smaller than the uncertainty

of the temperature values from different sources. Obviously

the influence of different lattice types on the melting point is

rather low. From Fig. 2 it follows that Eq. (7) is generally

valid for both types of alkanes. But some divergent details

are of interest: (i) the melting points of the ultra-long n-

alkanes ðn . 140Þ deviate from the dotted line and there is a

larger scattering, and (ii) the fusion temperatures of the

cyclic alkanes are all somewhat too low whereas the slope is

a little higher than for n-alkanes (to elucidate a Tfus versus n

plot has been added, see Fig. 3).

3.2. Discussion of the findings

How can the latter be understood? The excess Gibbs free

energy Ge is always a negative quantity (i.e. the total

enthalpy is reduced) because the parts of the molecule at the

surface of the lamella are not bound as strong as the inner

parts are. This is in particular true for the chains of cyclic

alkanes around the folds, they are somewhat twisted and do

not fit well into the lattice. For these alkanes we know the

structure of the crystals [11,12], the main parts of the chains

are parallel to one another and there are two tight folds with

4 CH2 groups in each of the (lateral) surfaces of the lamella

(see Fig. 6b and Refs. [11–13]). Two of these four CH2

groups are almost part of the stems and two are

perpendicular to them in the surface of the lamella. The

former do and the latter do not contribute to the total

enthalpy of the lamella crystal and we should subtract 2 £

2 ¼ 4 from the total number of CH2 groups to get the true

number n of CH2-groups which are really inside the

molecule stems of the crystal and thus contribute to the

total crystal enthalpy. If we use the corrected (reduced by 4)

number n, the (reciprocal) fusion temperature of the even

numbered cyclic alkanes fits much better to the Gibbs–

Thomson line of linear alkanes (Fig. 4), but the fusion

temperatures of some odd numbered cyclic alkanes are still

too low. This can be explained by the non-symmetric ring,

causing a more disturbed lattice in the neighborhood of the

folds. This in turn causes a reduced interaction energy in this

region, formally leading to a decreased number of those

CH2 groups which contribute to the fusion enthalpy, and

therefore to a larger excess enthalpy and a reduced fusion

temperature for these alkanes.

The other deviation from the Gibbs–Thomson line

concerns the alkanes with n . 140. They almost show a

too low fusion temperature compared to the expected one

(Figs. 2–4). As the intersection point of this line (at

2.4125 £ 1023) corresponding to 414.5 K is well proved

experimentally—it is the melting point of the infinite n-

alkane and that of fully chain-extended linear polyethylene

crystals [2]—and as the melting temperatures of other

chain-extended PEs fit well again, we assume this line

should describe the true melting temperatures. A possible

explanation of the somewhat too low measured tempera-

tures of most of the ultra-long alkanes could be some

unavoidable ‘impurities’ from the complex synthesis

resulting in a product containing some alkanes of different

length. This would reduce the melting point of the main

component. Another possible explanation could be the

different laminar habit of the ultra-long alkanes (e.g. 368

tilted stems)3 and thus a different enthalpy per CH2 unit

compared to that of smaller alkanes.

Anyhow, as a result we can realize: (i) the modified

Gibbs–Thomson Eq. (10) is valid for linear as well as cyclic

alkanes with almost the same parameters (Eq. (11)), (ii) the

fusion temperature is determined by the number of CH2

units in the stems of the molecule which are fitted into the

crystal and (iii) for cyclic alkanes, having the same melting

point as the linear alkanes, the thickness of the lamellae in

the stack is only about half of that of the linear alkanes.

On the other hand, if we would use the common

Fig. 3. Data from Fig. 2, but plotted in conventional manner. The dotted line

marks the fit function, the dashed line marks the melting temperature of

infinite chains (414.4 K).

Fig. 4. Gibbs–Thomson plot as in Fig. 1, but for the cyclic alkanes n is

reduced by 4 CH2 groups (see text).

3 Referee remark, which is thankfully acknowledged. However, a

possible tilt angle may influence the thickness and the surface energy of

the lamella, but does not play a role in our approach if the chain distance

and thus the interaction energy between the chains is not changed very

much.
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Gibbs–Thomson approach (with the lamella thickness as

variable) the relatively high melting point of cyclic alkanes

could only be explained with a distinctly reduced surface

free energy and/or higher enthalpy of fusion. Both

assumptions are in contradiction to the experimental

findings showing a higher excess free energy and a lower

enthalpy of melting for cyclic alkanes than for linear ones.

For the melting behavior of cyclic alkanes, the lamella

thickness is, obviously, not the main quantity. In our

approach, however, the number of CH2 units of the

molecule stems incorporated in the crystal determines the

right melting temperature regardless whether we consider

linear or cyclic alkanes. This is in line with the dynamic

explanation of the melting process, where the mobility of

the molecule is the dominant factor for the break down of

the lattice, and the mobility, of course, depends on the

number of repeating units within the chain molecule.

Linear alkanes have since many years successfully

served as model substances for polyethylene and we have

to ask the question whether our approach is specific for the

oligomers (alkanes) only, or whether it could be helpful as

well to explain the melting of the polymers (polyethylene

and its copolymers) as well.

4. The melting of polyethylenes

4.1. Normal melting behavior

For partial crystalline linear polyethylene the close

connection between the lamellae thickness and the melting

point is well known and has been proven by X-ray and IR

measurements. Numerous papers on this topic exist in

literature and there is no doubt about the validity of the

traditional Gibbs– Thomson equation (containing the

lamella thickness l ). Wunderlich [2] published the follow-

ing equation for PE data collected by Illers and Hendus [14]

Tfus ¼ 414:2 1 2
0:627

l

� �
^ 0:8 K ð12Þ

where l is given in nm. We first calculate an equivalent

formula from our Eq. (11) by substituting n, the number of

CH2 groups inside the crystal lamella with l/lC – C with

lC–C ¼ 0:1273 nm; the C–C distance in direction of the c-

axis of the orthorhombic lattice4:

1

Tn
fus

¼ 2:413 £ 1023 þ 0:0162
0:1273

l

¼ 2:413 £ 1023 1 þ
0:855

l

� �
ð13Þ

The reciprocal of this equation yields approximately:

Tn
fus ¼ 414:4 1 2

0:855

l

� �
ð14Þ

Eq. (14), calculated from the alkane data fit of Eq. (11), is

almost equal to Eq. (12) fitted to PE data. As one would

expect, the (extrapolated) melting point of the infinite large

lamella is the same for both formulas, but the slope is

somewhat different because the excess free energy involved

differ for PE lamellae crystals and for alkanes. As a result

the new approach holds even for PE lamella crystals, but

there are no really new aspects so far, beside the fact that we

can calculate the melting point of polyethylene crystals as

well as linear and cyclic alkanes with one and the same

formula and one, almost unchanged, set of parameters. This

way the alkanes can serve as model substances for PE.

4.2. Unusual melting behavior

However, for some types of polyethylene the melting

point cannot be calculated from the lamella thickness. An

interesting example is ‘gel crystallized’ ultra-high molecu-

lar weight polyethylene (UHMWPE). This material con-

tains rather thin stacked lamellae with a thickness of

12.5 nm (125 Å) and a narrow thickness distribution, as

measured by SAXS [15,16]. On heating this material, in the

temperature region of 110–120 8C a doubling of the lamella

thickness takes place, which then remains almost unchanged

until melting occurs. The measured melting temperature

(133.5 8C, see Fig. 5) is, however, significantly higher than

the calculated value using Eq. (12) or (14) and a thickness of

25 nm, namely 130.6 or 127.0 8C, respectively. Further-

more, the lamellae doubling process is not at all visible in

the DSC curve (Fig. 5) though any real melting of the thin

and crystallization of the thick lamella should be somehow

visible. Obviously the enthalpy is identical for both types

of lamellae (no net heat exchanged) and melting and

Fig. 5. Normalized DSC curve of gel crystallized (mass: 2.2 mg, heating

rate: 10 K min21) and nascent (mass: 2.7 mg, heating rate: 10 K min21)

UHMWPE, the expected melting temperatures for certain lamellae,

calculated with Eq. (12), are marked.

4 A possible tilting angle of 358 [11] would, of course, result in a

somewhat different factor.
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crystallization are taking place simultaneously in a con-

tinuous process well below the real melting point of the

resulting lamellae and without changing the degree of

crystallinity. This is an unusual behavior, normally the start

of melting of smaller lamellae is clearly visible in DSC, e.g.

in the case of low density PE.

Another example of unusual melting has been reported

from ‘nascent’ (i.e. virgin material from the catalyst) ultra-

high molecular mass PE (UHMMPE) [7,17]. The original

small crystals (13 nm, measured by X-ray and TEM [6])

thicken on annealing at 120 8C to maximum 25 nm (without

any visible effect in the DSC curve, see Fig. 5) but melts at

140.9 8C, a temperature which is normally found for high

pressure crystallized ‘chain-extended’ PE with very thick

(.1 mm) lamellae [2]. From Eq. (12) the melting

temperature of the nascent UHMWPE should on heating

change from 121 8C (nascent crystal size) to 131 8C (25 nm

maximum final size), but nothing is visible in this

temperature region (Fig. 5). Very interesting in this context

is the finding of Phillips that the melting temperature after

etching the nascent material with fuming nitric acid drops

from 142 to 130 8C, whereas the ‘coarse particle macro-

morphology remains relatively unchanged’ [7]. If we

assume that the etching cuts the PE chains along the surface

(e.g. the folds) and leaves the lamellae unchanged the

resulting material should melt in the temperature region of

the respective n-alkane lamella (in the oxidized form, to be

precise). From the measured melting temperature of the

etched sample (130 8C [7]) we can calculate a lamella

thickness l somewhat lower than 25 nm in nice agreement

with the X-ray results of the unetched sample. Obviously the

folds, existing in nascent UHMMPE, cause an increase of

the melting point as is the case with cyclic alkanes, having

narrow folds, compared to linear alkanes with free ends.

As a result, the melting point of these special PEs cannot

be explained from the crystal thickness within the frame of

the common Thomson equation. In what follows we try to

show, that our approach containing the melt dynamics—via

the length of the crystallized part of the chain—may be

more helpful.

5. Discussion of the new approach to the Gibbs–

Thomson equation

The essential outcome from the application of our

approach on alkanes was that the melting temperature of

linear as well as cyclic alkanes can be calculated with the

same formula, if we take the number of repeating units (CH2

groups) from the molecule stems which are incorporated in

the crystal as determining parameter.5 Here the question

arises how can the molecule ‘knows’ this number and feels

its length inside the crystallite. The answer comes from the

picture of melting dynamics presented in Section 1: there is

a high mobility of the repeating units as well as of the total

molecule already well below the melting point, at least in

the case of hydrocarbons. This is supported by the above-

mentioned findings of lamella thickening (doubling) below

the real melting point. For chain molecules not only the

positional and orientation but also the conformational

entropy increases on melting. The dynamics of confor-

mations imply a high mobility even inside the crystal. A

conformational defect inside the crystal can only be

generated by moving the complete molecule somehow.

This dynamics and the distinct increase of conformational

defects in the pre-melting region enable the molecule to feel

its length.

Of course, the mobility of a large molecule incorporated

in a crystallite is more constraint than that of a small

molecule. In the case of linear alkanes every molecule feels

its own length (the number of CH2 units) because they must

move cooperatively to produce conformations. In the case

of cyclic alkanes, a movement of one of the two parallel

chains in the crystal is only possible when the adjacent other

chain moves with it (see arrows in Fig. 6b). Again the total

molecule (the complete ring) has to move cooperatively to

produce conformational defects and it feels its total length.

This way the generation of conformational distortions

requires the mobility of the molecule in crystallized part.

The mobility of a cyclic alkane (in a thinner lamella crystal)

is then almost the same as the mobility of a linear alkane

with the same number of repeating units but in a much

thicker lamella. From the dynamic picture of melting the

melting point of molecules in a crystal is linked to its

mobility and we can understand the melting behavior of the

two types of alkanes in this way.

Fig. 6. Scheme of structure (from X-ray analysis and molecular modeling)

of alkane and PE chain molecules. Projections into and perpendicular to the

fold plane of (a) n-alkanes, (b) cyclic alkanes, (c) once folded long alkanes,

(d) tightly folded PE (arrows: cooperative movement of chain segments).

5 Remark: Broadhurst’s formula (3) gives the same approach but only for

linear alkanes.
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So far so good, but how can the unexpected high melting

point of UHMMPE be explained in this picture? The

lamellae of normal linear PE (crystallized from the melt)

normally contain parallel chains with randomly arranged

loose loops and inter-crystal molecules within the amor-

phous layer. There are only a very low number of adjacent

narrow folds like those in cyclic alkanes. There are no

serious mobility constraints outside the crystal lamella and

the conformation dynamics let the molecule feels only that

part of it which is inside the crystal. Whether there is a CH3

end-group in the surface as in n-alkanes, or a loose loop

hanging there seems to lead to the same feeling. But if tight

or adjacent folds (like in cyclic alkanes) exist in the lamella,

the respective part of the chain feels longer, because

incorporating a conformation into one part of the chain in

the crystal implies not only the movement of that part but

also the tightly connected part of the molecule (see arrows

in Fig. 6). In other words a lamella which contains tight or

adjacent folds should melt at a higher temperature than that

without such folds, because the dynamics is more constraint.

To be honest this is a speculation not jet proved for PE

crystals, but it is true in the case of lamellae crystals of

cyclic alkanes compared to those of linear ones.

For the gel crystallized UHMMPE, mentioned above, the

too high melting point could be explained with our picture,

if we assume a corresponding amount of adjacent folds in

the lamella. (The existence of such folds is also a

precondition for the lamella doubling process to occur

[15].) And the well proved doubling process [16], for its

part, is an indisputable proof for the chain dynamics inside

the crystal.

The other unexpected example, the very high melting

point of the above-mentioned nascent UHMMPE powder,

can be explained if we assume that the crystallite formed in

the reactor contains only a very little amount of inter-crystal

chains (or tie-molecules) and very little entanglements. This

nascent UHMMPE is synthesized in solution at rather low

temperatures, the chain, ‘shooting’ out of the active center

of the catalyst, is immediately attached to the crystal grain.

The virgin crystal aggregate is obviously rather disordered,

with large loops in the amorphous layers, but there are a lot

of adjacent folds and only little number of entanglements.

On heating, the huge chain mobility, even inside the

crystallite, tightens the chains. The loose loops are lost and

the resulting crystal contains only adjacent folds and chains

in the amorphous layers which are pulled tight. For

conformation dynamics many chains (if not all) have to

move cooperatively in such a crystal (Fig. 6d). Conse-

quently the molecule feels very long and the melting point

should equal to that of a very large n-alkane approaching

that of the infinite alkane (which for its part equals that of

high pressure crystallized, chain-extended PE). As a result,

such a crystal should melt at the same temperature as the

chain-extended one, what is found experimentally.

During discussions on different crystallization meetings

it was, however, argued that experiences with ultra-long

n-alkanes contradict our ideas and support the common

Gibbs–Thomson approach [18]. To check this objection we

collected all available literature on the melting behavior of

large n-alkanes. Unfortunately there are only very few DSC

results published, but what we found is presented in

Section 6.

6. The proof with ultra-long n-alkanes

Linear alkanes with more than 150 CH2 groups can form

both extended chain (ECC) as well as folded-chain crystals

(FCC). It has been shown, that, depending on the chain

length, 1–3 tight folds are possible. The respective lamella

thickness has been measured with X-ray and the number of

all-trans CH2 groups by Raman spectroscopic methods

(LAM).

Table 1 contains the available experimental data [19–22]

on melting temperatures of those ultra-long alkanes which

exist in ECC as well as FCC form. In Table 2, on the other

hand, the expected melting temperatures of those alkanes

are listed. We used Eq. (11), which describes the melting

behavior of n-alkanes very precisely, together with the

measured nl (from LAM), i.e. the number of effective –CH2

groups in the all-trans chain stems nl ¼ ðn 2 2Þ=2—to

calculate these values.

Table 1

Measured fusion temperatures and of ultra-long n-alkanes [11,19–22]

n Tfus ECC

(K)

Tfus FCC

(K)

nl FCC

(from LAM)

Tfus ECC 2 Tfus FCC

(K)

Impurity correctiona

(K)

Tfus FCC

(K)

(corrected)

neff FCC with Eq.

(11)

neff from Fig. 7

168 397.5 395.1 92 2.4 1.0 396.1 145

198 399.8 391.2 97 7.6 1.0 392.2 119 118

216 401.5 397.2 111 4.3 0.4 397.6 159

246 401.8 395.7 124 6.1 1.6 397.3 156 154

288 ? 402.0 151 ?

294 403.6 398.8 153 4.8 1.6 400.4 192 191

384 ? 404.5 – ?

390 405.2 402.2 ? 3.0 2.2 404.4 270 262

a For impurity correction the difference between the expected and the measured ECC melting point has been used.
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Checking the unfolded crystals first, one find the

measured fusion temperatures of the alkanes in the ECC

state always somewhat lower as calculated. This is probably

caused by impurities or by different lamellar habit, as

already mentioned in Section 3 (see even Figs. 2 and 4).

Assuming the same influence (reduction of the melting

point) even for the folded-chain state, we used these

differences (Table 1) to correct the measured fusion

temperatures of FCC properly. This correction is reasonable

because the lowering of the melting point should be same for

ECC and FCC, either we use the one or the other explanation

for the melting point depression, because the impurities are

the same in both cases and the lamellar habit as well.

These results lead to remarkable findings. (i) The

measured melting temperatures of the FCC are significantly

higher than the calculated ones. That is even more

pronounced for the (impurity-)corrected values. (ii) The

measured differences between the melting points of the ECC

and FCC crystals (Table 1) are much smaller than the

calculated ones (Table 2). As these quantities should not be

influenced by possible impurities or other influences, we

have to draw the conclusion that the measured melting point

of the FCC is much higher than the respective lamella

thickness predict.

This reminds us of the finding with cyclic alkanes

(Section 3). To put it into the picture of our approach, there

are again more CH2 groups involved in the melting

dynamics as calculated from the lamella thickness ðnl ¼

l=0:1273 nmÞ: On the other hand: from the measured FCC

fusion temperatures (the corrected ones!), the effective

number neff of CH2 groups which the molecule feels via the

melting dynamics can be calculated using our approach and

the alkane fit of Eq. (11) (Table 1). This number is

considerably higher than the number nl calculated from the

lamella size or from the FCC morphology (with nl ¼

ðn 2 2Þ=2; assuming two CH2 groups of the fold outside the

lamella stems, see Fig. 6). The quotient of these two

quantities is, however, almost the same for all n-alkanes (at

least if we compare the results from the same author, see

Table 2). Obviously neither the lamellae thickness (nl) nor

the total number of CH2 groups determines the melting

point of the FCC but a certain neff which is somehow in

between nl and n. In Fig. 7 the relations are demonstrated. It

contains the melting points of some ultra-long alkanes in the

ECC as well as FCC states. For FCC crystals the possible

positions using n, nl and neff, respectively, are included for

the measured temperature in question.

Taking the picture of melting dynamics into account, this

finding can be explained. As mentioned in Section 3 the

chain molecule of cyclic alkanes feels the total ring length

because of the constraints from the two tight folds which

enforce a cooperative movement of all CH2 groups to

produce a conformation in the crystal. In the case of once

folded long n-alkane molecules in the FCC, we can draw the

conclusion, that the movements of either chain (with

conformation changes) is hindered in a different manner,

depending on the direction of the movement. A movement

toward the fold (see left-hand side of Fig. 6c) should be

minor constraint, the chain only feels the free end of the

molecule, whereas the movement in the other direction,

away from the fold (see right-hand side of Fig. 6c) is only

possible if the total molecule follows. As a result the melt

dynamics enables the molecule to feel a length which is a

compromise between the total (n ) and half of the length (nl).

Fig. 7. Gibbs–Thomson plot of measured DSC melting points [11,19–22]

for some of the very large n-alkanes forming ECC as well as FCC crystals.

The horizontal dotted lines represent the measured melting temperatures of

FCCs. Neither the total number (n ) nor nl ¼ ðn 2 2Þ=2; defining the

lamella, fits to the expected value (dashed line from Eq. (11)). But a number

neff (marked with vertical dotted lines) in-between the two numbers leads to

the right value. All temperatures are somewhat too low (i.e. above the

dashed line) because of unknown reasons (impurities?) not corrected for.

Some data of chain-extended PE [2] are included.

Table 2

Calculated fusion temperatures of long n-alkanes (using Eq. (11))

n Tfus ECC (K) nl ¼ (n 2 2)/2 (FCC) Tfus FCC (K) Tfus ECC 2 Tfus FCC

(K)

neff/nl neff/n

168 398.5 83 383.4 15.1 1.7 0.86

198 400.8 98 387.9 12.1 1.2 0.61

216 401.9 107 390.0 11.9 1.5 0.74

246 403.4 122 392.8 10.6 1.3 0.63

288 405.0 143 395.8 9.2

294 405.2 146 396.2 9.0 1.3 0.65

384 407.3 191 400.3 7.0

390 407.4 194 400.6 6.8 1.4 0.69
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The effective value depends on the probability of the

different movements. It seems reasonable, that the minor

constraint movements are more probable than the other. A

probability ratio of 70:30 for the toward and away the fold

movement would result in a number ratio neff=n ¼ 0:65

which fits to the values of Table 2. We would get the same

ratio if we estimate the Boltzman factor for the movement

probability of chain segments of length n and nl,

respectively, taking the activation energy proportional to

the number of CH2 groups involved. To be honest these

argumentation is highly speculative so far but could be a

possible explanation for the experimental findings and fits

smoothly into the new approach to the melting behavior.

To summarize, irrespective of the speculations of the last

paragraph, the ultra-long alkane data, as far as available

from literature, support our approach rather than the

arguments of the critics. The melting point is mainly

determined by the number of CH2 units which the molecule

feels dynamically than by the size (lamella thickness) and

the surface energy.

7. Conclusions

The thermodynamic approach to the Gibbs–Thomson

equation via an incremental composition of the melting

enthalpy and entropy leads to a formula which formally

equals the common Gibbs–Thomson equation, but contains

the number of repeating units in the chain molecule rather

than the thickness of the lamella crystal. The idea is not new,

it has been used by Huggins [5] and Broadhurst [3] before,

but only in the case of linear alkanes. We have shown that

this approach holds for cyclic alkanes as well, and that the

melting point of all types of hydrocarbons, which crystallize

in the same type of lattice, can be calculated with almost the

same set of parameters. This way cyclic alkanes can serve as

model substances for PE crystals with adjacent or tight

folds, whereas linear alkanes already before proved to

model melt crystallized PE very well.

The idea to deduce the melting point of PE and its

oligomers from the number of CH2 groups involved in the

melting dynamics rather than from the thickness of the

lamella and the surface energy, enables us to explain

the melting behavior of all types of polyethylene with one

and the same (modified) Gibbs – Thomson equation

(containing the number of repeating units instead of the

lamella thickness). With this approach it is possible to

describe the melting behavior of linear, cyclic and folded

alkanes with the same set of parameters as well as all types

of polyethylene. In particular the unusual high melting point

of gel crystallized and nascent PE can be explained this way

if we assume a large number of tight folds in the respective

crystals. This view is supported by (i) the melting behavior

of alkanes, namely the fact, that the melting points of linear

alkanes equal those of cyclic alkanes with the same number

of CH2 groups and (ii) the melting behavior of ultra-long

alkanes which crystallize in extended chain as well as

folded-chain form. In both cases an almost equivalent

crystal structure is assumed, with about the same melting

enthalpy per CH2 group. This seems to be the case, at least

for the longer alkanes ðn . 40Þ and enables us to get some

more insight into the crystallization and melting procedures

of all types of polyethylene as well. There are still some

open questions in particular concerning the explanation of

the melting points of alkanes and PE with adjacent folds. It

would be very helpful if precise measurements of the

melting points of ultra-long alkanes in ECC and FCC could

be done in future. These measurements could serve to prove

the presented approach to the Thomson equation and help to

understand the unusual high melting temperature and the

melting dynamics of certain polyethylenes.
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G.W.H. Höhne / Polymer 43 (2002) 4689–46984698


	Another approach to the Gibbs-Thomson equation and the melting point of polymers and oligomers
	Introduction
	Another approach to the Gibbs-Thomson formula
	Verification of the approach
	Literature data
	Discussion of the findings

	The melting of polyethylenes
	Normal melting behavior
	Unusual melting behavior

	Discussion of the new approach to the Gibbs-Thomson equation
	The proof with ultra-long n-alkanes
	Conclusions
	Acknowledgments
	References


